
NOTATION 

c, dimensionless (in inlet concentration units) concentration of sorbed gas or liquid 
in mobile phase; a, dimensionless (in inlet concentration units) concentration of matter in 
sorbent per unit volume of the mobile phase; f(c), isotherm equation of sorption; x, coor- 
dinate; N, dimensionless coordinate; t, time; r~ Tw, dimensionless times; u~ mean flow ve- 
locity; D~ lengthwise diffusion coefficient; l, kinetic parameter--retardation path~ y, Henry 
coefficient; e, isotherm nonlinearity parameter; m, exponent; Xo(t), mobile boundary of con- 
centration c = i~ ~(T), dimensionless mobile boundary of concentration c = i; K, constant. 
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AN APPROXIMATE MATHEMATICAL MODEL OF HEAT AND MASS 

TRANSFER IN TWO-PHASE FLOW 

T. Blikle and T. Vaida UDC 533.72 

We propose an approximate method for studying transport processes in one-dimensional 
two-phase flow which permits the determination of the system output as a function of 
input and the system parameters. The error of the method is estimated. 

A mathematical description of transport processes in steady two-phase flows characterized 
both by mixing and the presence of arbitrary sources whose strengths depend only on the po- 
tentials of the entities being transported is important for the chemical industry. For sim- 
plicity we consider only one-dimensional flows. It is known that such a description cannot 
generally be given in exact closed analytic form even for one-phase systems. There is evi- 
dence, however, that for a certain heuristic reinterpretation of the differential equation 
to be solved and its boundary conditions, an approximate method of describing the system 
analytically can be constructed [i]. 

In the present paper we investigate such a method in a general form suitable for a math- 
ematical description of two-phase heat and ma~s transfer. The proposed method can be used 
not only for an approximate analytic study of heat and mass transfer in two interacting phases, 
but also for an approximate study of heat- and mass-transfer processes taking place simul- 
taneously in a single phase. In addition, this method can in principle be generalized to in- 
clude an arbitrary number of equations. There then arises the problem of comparing the ap- 
proximate and exact results. In this paper we restrict ourselves to the most important prac- 
tical case of two equations. 

It is known [2] that transport processes in the systems under consideration can be de- 
scribed in the usual approximation by the equations 

- -  F YF d~u du [. 
ix,----r- + V --ax* - -  (u, u ' )  = O, ( 1 )  
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--  F' 9~' d2u'~ -F V' du' f'* (u, u') = O, 
dx*" dx* 

where u and u' are potentials describing the extensive quantities whose transport is being 
investigated, F and F' are the separate transfer cross sections, ~ and ~' are mixing coef- 
ficients, V and V' are the bulk velocities of the separate phases, f* and f'* are source 
functions which are positive for a source and negative for a sink. The only condition im- 
posed on the source functions so far is that they must be continuous functions of the poten- 
tials. Henceforth we consider the coordinate x* in the range --co < x* < +~, although the sys- 
tern under investigation lies in the range 0 ~x* ~L. 

By introducing the dimensionless coordinate x = x*/L and the dimensionless quantities 
A = F~/VL and A' = F' ~{'/V'L the system of equations (i) can be reduced to the form 

-- A dR du 
a--i; + ~ - - f (u ,  u') = o, 

(2 )  

- -  A' dZu' du' 
dx 2 + ~ - -  f' (u, u') = 0 .  

These equations are defined in the range 0 -----x -< i; f and f' are the transformed source func- 
tions. 

From now on we write all relations in a form corresponding to Eqs. (2). Boundary condi- 
tions must be specified for Eqs. (2), and since this is not a trivial problem we consider it 
first. 

To formulate natural boundary conditions for Eqs. (2) it is necessary to investigate 
mathematical processes in the regions preceding the system entrance and following the exit 
for appropriate matching conditions. If a direct representation of the functions describing 
the inflow and outflow of the entities being transported is possible, we obtain the required 
boundary conditions for the system under study from the matching conditions at the system en- 
trance and exit. 

We consider first the conditions at the entrance, i.e., in the range --= < x < 0. We sim- 
plify the problem without loss of generality by considering only the once-through problem. 
In the range indicated we can write 

- -  A: deui dui dZu~ du~ 
+--d~ = o, --A~ --~ + -d-i- =0 ,  (3) 

where u and u' are the corresponding potentials, and At and A; are dimensionless mixing co- 
efficients in the region--~ < x < 0. 

At points sufficiently distant from the matching point x = 0 the potentials must have 
certain specified values. At the matching point the flow of the extensive quantity described 
by the given potential, and the potential itself, must be continuous, i.e., 

lim ut=u b, ut(O)=A, [du, I :u(O)--A(dU) 
0,--= \ dx 1,,=o ~ ,,=o" 

, /du;~ =u '  A ' ( d u ' )  (4) 
limu~=u'b, u[(O)=A1 [dx]~=o (0)-- \ax ~=o' 

u~ (o) = u (o), u i (o) = u' (% 

Similarly, in the range i < x < +~ we have 

d2t@ d~ d2u~ du~ 
--A 2~+-~-=0, --A~+-~ , ( 5 )  

where u a  and u'~ are potentials and A2, A'~ are dimensionless mixing coefficients. 

Using the continuity conditions at the matching point x = i, and requiring that the po- 
tentials be bounded in the range considered, we obtain 
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u' (1)--A'  tdu' ~ =u~(1)--A~ ldu~l �9 

u ( 1 )  = u z ( t ) ,  u '  (1) = u~ (1), ( 6 )  

lim ~ < §  lira u ~ < §  

We consider now the conclusions which can be drawn with respect to the boundary condi- 
tions at the system entrance by using the general solution of Eqs. (3). Their general so- 
lution has the form r 

u,(x)  = C,/ /A,  + C,2, u; (x) = C~, d/As + C;~, (7)  

where the C are arbitrary constants. A comparison of (7) with the first two conditions of 
(4) shows that Cxa = u b and C~= = u~. The next two conditions of (4) lead to very important 
formulas which represent the boundary conditions at the entrance to the system under study: 

u (0) - -  A -~x ~=0 \ dx ],=o 

Similarly, the most general solution of (4) has the form 

u~(x) = C2//A" + C2~, u~ (x) = C~ d/A2 + C~2, (9) 

~r the C are constants, !t follows directly from (6) that Cz~ = C' . z~ = 0 and that the 
required boundary conditions at the system exit are 

du du' 

We note that the mathematical structure of solutions (7) and (9) is essential in the 
derivation of the boundary conditions; i.e., full use is made of the fact that the mixing 
occurring before the system entrance and following its exit, and in the system itself, is 
described by the diffusion model [3]. This enables us to give a physical interpretation of 
the boundary conditions derived similar to that generally given in the diffusion model. 

Thus, Eqs. (2) must be solved with boundary conditions (8) and (i0). As has been pointed 
out, the solution cannot be found in closed form. To obtain the solutions it would first be 
necessary to find the operators inverse to the kind of differential operators appearing in 
Eqs. (2) in which the boundary conditions would also be taken into account. These operators 
would enable us to obtain solutions by the method of successive approximations. 

Since boundary conditions (8) are inhomogeneous, finding the inverse integral operators 
is not equivalent to finding Green's functions of the differential operators mentioned. 
The required relations can bedetermined directly~ however, by the method of variation of 
constants [4]. The basis functions for homogeneous ~quations formed by the differential 
operators in (2) are 1 and e x/A, and also i and e x/A . Accordingly, the solutions of Eqs. 
(12) can be written in the form 

u (x) = r~ (x) + r2 (~ ~/A, u' (~  = r~ (6  + f~ (6  ~/A, (11) 

where the F are functions to be determined. 

From the condition that the first derivatives of u and u' in (II) must have the simplest 
possible form, and from the fact that u and u' must satisfy Eqs. (2), we obtain the following 
equations for the F: 

dFt  q_ dF2 . eX/A = O, dF2 e x/A -4- f (u, u,') = O, 
dx  dx dx 

dlP~ dFs eX/A, dF~ 
dx +" "-'Rf- = O, dx - -  eX/A" -i- r '  (U, U') = 0 .  

(12) 

By transforming and integrating (12) we obtain the following relations: 

x 

r i  (x) = rio + .i f (u (~), u' (~)) ~/, 
0 
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x 

F2(x) = Fzo-}- ~ e--~/Ay(u(~), u'(~))d~, 
0 

x 

= + S 
o 

x 

F~ (x) = F~o - -  .f e-C/"" f' (u (D, u' (~)) d~, 
0 

(13) 

where the Po arc onstants determined from boundary conditions (8) and (I0). Substituting 
(13) into (ii) and the boundary conditions, we obtain 

i 

Fio  -=- U b, Fzo = .~ e - U A  f (u (~), u '  (~)) d~, 
o 

1 

r;o=.;, r;o .I 
0 

(14) 

Finally, substituting (14) into (13) and (ii) and making some transformations, we obtain the 
following integral equations: 

x 1 x--~ 
u (x) = % Jr S f (u (~), u' (D) d~ + ~ e ]~ f (u (g), u' (~)) 4 ,  

o ~ (15) 
x 1 x--~ 

u' (x) = u; + f' u' + S e-z- f' (u u' (D) 
0 x 

We note that the integral operators already found act on the source functions on the 
right-hand sides of the integral equations (15); i.e., we finally obtain a certain transformed 
form of the initial problem which is expedient to use for several reasons. In the first 
place, instead of the initial boundary-value problem described by six equations of different 
types, we obtain two equations of the same type which are mathematically equivalent to the 
initial problem. As will be seen later, such equations are very useful also for comparing 
exact and approximate results. 

Secondly, Eqs. (15) make possible a successive-approximations solution which is a unique 
method of solving the problem. Since the integral operators which appear are nonlinear, the 
relatively well-developed theory of linear operators is not applicable. Equations (15) could 
be linearizedby expanding the source functions f and f' in series but this would change the mathema- 
tical meaning of the problem under study. As a result, for example, the estimate of the er- 
ror in comparing the approximate and linearized solutions would lose its meaning. 

Equations (15) enable us in principle to find the exact solution by the iteration meth- 
od. If trial functions u and u' are substituted into the right-hand sides of (15) and the 
results obtained on the left-hand sides are again substituted into the right-hand sides, and 
this is repeated an infinite number of times, the exact solutions u and u' are finally ob- 
tained if the iteration process converges. 

The heuristic approximate analytic method of solution developed is characterized first 
by the fact that it is based on the synthesis of several partial results and takes account 
of most practical requirements. The construction of the approximate method was based on the 
following considerations: 

a) The use of a second-order equation, which is very difficult to study, can be given 
up. An attempt can be made to compensate the inadequacies of the mathematical description 
given by a first-order equation by the use of appropriately chosen heuristic parameters or 
boundary conditions. 

b) As the mixing coefficient approaches zero the method of approximations was required 
to lead to results reflecting all the characteristic features of the exact model without mix- 
ing, and as it approaches infinity -- to results completely reflecting the characteristic fea- 
tures of the model with complete mixing. 

c) In a number of cases it is sufficient to restrict ourselves to finding approximate 
values of the potentials at the system exit only, i.e., to finding outputs. This avoids 
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solving a system of approximate differential equations. A further simplification of these 
equations leads finally to a system of algebraic equations for determining outputs. 

Taking account of what has been said, we replace the initial mathematical model by the 
following heuristic model: 

( l + A )  d v  d r '  _f , (v ,  v ' )=0,  (16) ~ x - - [ ( v ,  v')--0, ( l+A')-~x- 

where v and v' are approximate potential functions, and the boundary conditions for Eqs. (16) 
are given in the form 

( l+A)  v(0) - -Av( l )=u  b (l + A') v' (0) -- A'v' (1) -- u~. (17) 

Here the parameters are those of the exact model with the same meaning. It is clear that 
these equations and boundary conditions satisfy the requirements formulated and that the in- 
tegration of the problem is very much simpler and can generally be performed in closed form. 
It should be noted that compatibility of the boundary conditions is assured for functions f 
and f' which are of practical interest. 

We now use Eqs. (16) and (17) to find approximate values of the potentials at the system 
exit. In all the source functions in (16) we replace a potential whose derivative does not 
enter the equation by its average value, defined in the following way: 

1 I 

= ~ ~ (x) dx, ~ : .f ~' (x) d~. (18)  
o 

The equations are integrated by making appropriate substitutions. We treat the average 
values substituted into these equations as constants. After integrating and using (17) we 
obtain the following simple relations: 

~(1) ~," ( I ) d r '  ( I + A )  S d_~v : I ,  ( I+A ' )  ~ _ --1. 
Ub+AV(X) f ( V ,  V') Ubq-A'v'(1) ft (U, ~)') 

I+A I+A'  

Two more relations are needed to determine the average values since Eqs. 
fice. After transformations and integration we obtain 

(19) 

(18) do not suf- 

v(1) v ' ( l )  
( I + A )  l vdv - ~ v'dv' ~. (20) 

_ - v ,  ( t + A ' )  f ' ( ~ ,  v')  f(v, v') 
Ub+AV ( I ) Ub+A "v" ( i ) 

I+A I+A'  

Equations (19) and (20) form a system of algebraic equations from which the potentials 
at the system exit can be found after eliminating the average values~ 

It should be noted, however, that the values of the potentials at the exit found in this 
way do not agree with the values obtained by solving the mathematical problems (16) and (17) 
and substituting x = i. This results from the fact that in integrating Eqs. (16) the separate 
potentials were sometimes treated as variables and sometimes as constants. Therefore, al- 
though the chosen constants are average values, we have not succeeded in finding the correct 
values of the potentials at the exit. Consequently, the approximation involves replacing 
the basic original model by an approximate model, and then obtaining an approximate solution 
of the approximate model. This fact is taken into account later in estimating the error of 
the approximation. 

To estimate the error of the approximation method it is first necessary to reduce (16) 
and (17) to the form of Eqs. (15). Equations (15) are obtained from (2), which describe the 
original model, and from the boundary conditions for the original model. A rigorous analysis 
of the differences in the conclusions which follow from the solutions of the exact and ap- 
proximate problems is hardly justified. Therefore, on the basis of the method described above 
we seek a solution of Eqs. (16) in the form 

v(x)== I.E(~, v ' ( x ) =  loE'(x). (21) 

457 



Substituting this into 

where Eo and E~ are constants. 
expressions for the constants: 

(16) and integrating, we obtain 

E (x) = 

x 

~ f (9(.~), v' (D) ~ + G, 
1-~,A 

0 

[' 9' 
E ~(x) = (9 (b ,  (b) d~ + eo ,  

I + A '  
0 

Now by substituting (22) into (17) and using (21) we obtain 

A 
Eo = ub + _----T 

A.-{-1 

(22) 

A #  

eo  = u~ + 1 + A - - - - - r  

Finally, substituting (23) back into (22) and 
following system of integral equations: 

.( 
v (x) = u b + f (v (D, o' (D) d~ + - -  

1 

; f (v (~), v' (~.)) d~, 

0 (23) 
I 

f' (v(b, v' (D) ~.  
0 

(21) and transforming the result, we obtain the 

1 A; 
1 + A [ (v (~), v' (~)) d~_, 

x 

I A' f' (v (D, ff (x) = u~ + f' (v (~), v; (~)) d~ q 1 + A ' - - - - ~  , 
0 x 

v' (D) dl. 

(15) a r e  Equations (24) are equivalent to problem (16), (17) in the same way as Eqs. 
equivalent to problem (2), (8), (i0). 

(24) 

We try to characterize the error of the approximation method used within the interval of 
interest by upper estimates of the following quantities: 

6 (x) = lu ( ~  - -  v ~)t ,  6' (x) = lu' ( ~  - -  v' (x)b (25 )  

By compar ing  t h e  c o r r e s p o n d i n g  e q u a t i o n s  of  sys tems  (15) and (24) we o b t a i n  t h e  f o l l o w -  
ing e q u a t i o n s  f o r  t h e  q u a n t i t i e s  i n  (25) :  

i 1 x-~ A 
6 (x) = I [[ (u (~), u' (~)) - -  f (v (~), v' (~))] d~ + ~ [e T f (u (~), u' (~)) 1 + A f (v (~), v' (~))1 d~], 

0 x 

x 1 x--~ 
~, (x) = [ .I [Y (" (~)' " '  (b) - f' (~ (~), ~' (~))] d~ + .i [e ~' f' (u (~), . '  (~)) - -  

0 x 

A' f' (v(~), v' ~ d~ (.~))1 =I. 
1 + A '  

Since we seek an upper limit we can obtain from Eqs. (26) the inequalities 

(26) 

1 x--~ 
6 (x) ~< I it (u (~), . '  ( ~ ) ) -  t (v (~.), ~,, (~))] d~ I + [ .[ [e ~ t (u (~-), . '  ( ~ ) ) -  

0 x 

A f(v(~), v'(!))]d~.[~ J~ [f(u(~), u'(~)).--f(v(~), v '(~))ld~+ 
I + A  o 

1 x-g A 
§ y le-W-/(u(~), u' (~)) 1 §  [(v(~), v' (~))1 d~, 

x 

(27) 
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f 1 x--~ 
tr(u(b, 

0 x 

A' f, ; If' (u (~), u' (~)) + f' (v (~), v' (b)l ~ + 1 + A' (v (~), v' (~))1 d~ ! ~< o 

l x - ~  A'  

+ ,f {e A, f, (u (~), u' (~)) 1 + A' (v (D, v' (b)l ~ .  
x 

Further transformation of Eqs. (27) requires the following additional assumptions: 

a) The source functions f and f' satisfy the flrst-order Lipshits condition with re- 
spect to both their arguments, and the constants appearingln the specific expressions for 
these functions can be specified from independent physical or mathematical considerations. 

b) The maximum absolute values of the source functions for the process can be indicated 
from physical or mathematical considerations, 

Thus, on the basis of what has been said we use the following relations for a further 
estimate of the error of the approximation: 

if(u, u ' ) - -  f(v, v ' ) l ~ K ( l u - -  v] + I u ~ - o %  
(2s) 

If' (u, u ' ) - -  f' (v, v')l ~< K' (lu - -  vi + lu' - -  v'D~ 
where K and K' are constants. If, for example, the potentials which occur can be written in 
simplex form, for which 0 ~ u, u'; v, v' ~ i, these constants satisfy the following estimates: 

K =  max [ Of t O[ l] 

K,= max [ 0[" Of' ] 
o<u,..<l , ~ u  ' Ou' " 

(29) 

Only crude estimates can be made of the second terms of the error 

x-~ A 
le A f(u, u') y(V, r 

1 + A (30) 

x-~ A' 
le A" f(U, U') y'(V, v ! ) I<2M' ,  

I + A '  
where the constants M and M' can be adequately estimated from similar arguments: 

M= max [If(u, u')l], M' = max [[f'(u, a')l ]. (31) 
O~U,U" ~ !  O~u,u" ~ I  

Now, comparing (27), (25), (28), and (30), and ordering the results, we obtain the fol- 
lowing system of integral inequalities for estimating the error: 

X X 

6~<K [ ( f i + 6 ' ) + 2 M ( 1 - - x ) ,  6 ' ~ K '  ,! (6 + 6') + 2M' (1-- x). (32) 
0 

We i n t r o d u c e  t h e  f o l l o w i n g  i n t e g r a l  e r r o r s  wh ich  a r e  e q u i v a l e n t  t o  (25) w i t h  r e s p e c t  t o  
t h e  c h a r a c t e r i s t i c s  of  t h e  a c c u r a c y  o f  t h e  m e t h o d :  

A= f6, A'---- $8'. (33) 
0 0 

Then, by comparing (32) and (33) we can transform the system of integral inequalities into a 
system of differential inequalities 

dA < KA --[- KA' + 2M ( 1 - -  x), dA' < K'A + K'A ~ d--~ ~-x + 2M' (1 - -  x). (34) 

In addition, the following is known with respect to (33): 

A(x = O) = O, A'(x = O) = O. (35) 

Since the error of the approximation method can be completely characterized by the sum 
of the errors in determining the potentials, and since such a sum is an upper estimate, from 
now on we consider the summation of the integral errors. We add the quantities in (34): 
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d 
a---; (A -~ A')~< (K ~- K') (A ~ A') + 2 (M/-M') (1--x). (36) 

We regroup (36) and multiply both sides of the inequality obtained by a positive definite 
function p which is so far unknown: 

d p--~ (A + A')--(K q-K')p(A--}-A')<~2(M-q-M')9(1--x). (37) 

We now try to choose O so that the left-hand side of (37) contains the derivative of the 
product of two functions. It is easy to see that this requirement is satisfied if 0 saris- , 
fits the equation d0/dx = --(K + K')p; i.e., p = e -(K K )x. Substituting the result of this 
operation into (37) we obtain 

d/__ (A + A') e-"K+1<')x ~< 2 (M + M') (1 - -x)  e -(t<+r')x . (38) 
dx 

Since the integration of both sides of any inequality over definite limits preserves the In- 
equality, Eq. (38) can be integrated from 0 to x: 

e-(K+r,,~]x<[2M+M" ( K-k-K'--I ) ]: 
[(A q- A') ~ ~�9 K q-- K' ~-- K +  K' e -~K+K')~ . (39) 

Substituting the limits of integration into (39), using (35), and multiplying both sides 
of the result by the positive definite function e(K+K') x, we obtain 

A_.}_A,<2M-FM' [ K+K'--I (etK+K',x ] 
x + K' --1 . (40) K+K" K+ 

Finally, we substitute x -- 1 in Eq. (4..0). This gives an upper estimate for the approxi- 
mation method, and this means an upper limit also for the integral error of the values of the 
potentials at the system exit calculated from Eqs. (19) and (20). 

The difference between the established error and the actual error will be smaller the 
more accurately the estimate in (30) is performed. However, the main difficulties in improv- 
ing this estimate are first the fact that a further solution of the approximate mathematical 
model gives only the values of the potentials at the exit, but does not lead to any informa- 
tion for the range 0 ---x < 1 under investigation. Secondly, in the integration of the equa- 
tions the effect of periodic fixation of separate variables can be established only for known 
functions f and f'. Therefore the functions f and f' together with their absolute limiting 
values must be estimated. At the same time the estimate unfortunately becomes relatively 
crude and, for example, the dependence of the error on the degree of mixing vanishes. 

A complex approximation will be very much more accurate. For example, a direct compari- 
son of (15) and (24) shows that the solutions agree, and this means that the values of the 
potentials at the exit also agree in the limit A + ~; i.e., the error will be zero. The ap- 
proximate mathematical model will be exact in the limit A § 0 also. In any case it can be 
established from Eq. (40) that the error cannot diverge for any functions f and fw which are 
bounded or monotonic in the range in question. 

NOTATION 

A, A', A,, AI, A=, A~, dimensionless mixing coefficients of corresponding phases or in cor- 
responding intervals; C,x, C~x, C,2, C~2, C21, C~,, C22, C' integration constants; E, E' 22, 

auxiliary functions; Eo, E~, integration constants; f*, f'*, f, f', source functions of sep- 
arate phases and their transformed forms; F, F', transfer cross sections for separate phases; 
~, ;~', constant mixing coefficients of separate phases; L, linear dimension of system; M, 
M', constants; u, u', ux, u~, u2, u~, uh, u~, potentials in separate phases or intervals or 
potentials far from system entrance; V,-V', bulk flow velocities of separate phases; v, v', 
~, ~', approximate values of potentials in separate phases and their average values; x*, x, 
length coordinate and its transformed value; F,, F~, F2, r~, auxiliary functions; rxo, r~o, 
r2o, r~o, integration constants; ~, ~', error functions; A, A' , integral errors; ~, integra- 
tion parameter; p, auxiliary function. 

i. 

2. 
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THE DYNAMIC PRESSURE FROM A COMPRESSED ARC IN 

METAL CUTTING 

V. G. Davydenko and V. D. Shimanovich UDC 621.791 

Direct spectroscopic techniques applied to plasma metal cutting show that the dy- 
namic pressure is dependent on the working conditions in the plasma source. 

The metal melts during plasma cutting mainly in the zone of the periodically moving anode 
spot; the molten metal is transported by the hot gas, and it is therefore important to exam- 
ine the dynamic pressure exerted by the flow in relation to source conditions in order to 
choose the optimum cutting conditions [i]. The dynamic characteristics have been examined 
[2] by means of contact transducers in a system where the metal was a water-cooled copper 
disk. More reliable determinations have been provided by optical spectroscopy, since these 
provide much higher time resolution. 

We used the system of [i], which contained a power supply and an OPR-II control unit, 
as well as a PMR-6 plasma source, where the workpiece was a strip of KhlSNIOT steel of thick- 
ness 10-50 mm. The range of working conditions was as follows: current I = 150-300 A, volt- 
age U = 165-200 V, gas flow rate (nitrogen) R~ = 50-125 liters/min, diameter of cathode noz- 
zle d c 2.5-3.5 ~, and length of open zone o7 plasma h = 6 mm. 

The data of [i~ were used to determine the dynamic head 0V 2 (where p is density and V 
is velocity) from the velocity V averaged over the cross section and spectroscopic measure- 
ment of the temperature, which is required in order to calculate p. The spectra were re- 
corded photographically with an ISP-30. The region 300-565 nm from the open plasma consists 
of a continuum and the lines from nitrogen atoms and ions (Fig. i). Spectral lines due to 
the electrodes (cathode and anode) are absent. This means that the open zone can be treated 
as free from impurities, so spectroscopic techniques can be used to determine the tempera- 
ture from the nitrogen line strengths on the assumption that the plasma consists of nitrogen 
only. The transparent-plasma approximation was used with the Nil 359.3 and 504.5 nm lines, 
which show no reabsorption under these conditions [3, 4]. The correction was applied for the 
plasma nonuniformity by solving Abel's integral equation by the method of [5] (Nil 359.3; 
360.9; 391.9; 517.5 nm); the plasma composition and the transition probabilities were taken 
from [6, 7, 9]. The relative error in determining the temperature from the absolute inten- 
sities did not exceed 5%. 

Figure 2 shows the radial temperature distributions at 2 mm from the end of the nozzle 
for a nitrogen flow rate of 50 liters/min for discharge currents of 150, 200, 250, and 300 A; 
the plasma had a higher temperature gradient. The maximum temperature attained under these 
conditions was 19,000~ for I = 200 A; then the temperature at 1.5 mm from the axis was 
14,000~ It was difficult to measure the temperature at more remote points on account of 
the poor dynamic range in the photographic recording. In addition, the central ray was used 
to determine the temperature from the relative intensities of the Nil 359.3, 360.9, 391.9, 
and 517.5 nm lines. The discrepancy between the axial temperature and the temperature from 
the central ray was less than 3000~ 

These results do not agree with those of [8], where a rise in axial temperature with 
arc current was reported. The temperature attained 30,O00~ for I = 300 A. PossiNle reasons 
for the discrepancy are as follows. First, the rise in axial temperature with the current 
was slight and lay within the error of experiment, and the workpiece was replaced [8] by a 
water-cooled anode, which could affect the plasma parameters. Also, the system had a poor 
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